Overview


Analytics Zoo

A unified analytics + AI platform for distributed TensorFlow, Keras and BigDL on Apache Spark


What is Analytics Zoo?

Analytics Zoo provides a unified analytics + AI platform that seamlessly unites Spark, TensorFlow, Keras and BigDL programs into an integrated pipeline; the entire pipeline can then transparently scale out to a large Hadoop/Spark cluster for distributed training or inference.

In addition, Analytics Zoo also provides a rich set of analytics and AI support for the end-to-end pipeline, including:

How to use Analytics Zoo?


Overview

Distributed TensorFlow and Keras on Spark/BigDL

To make it easy to build and productionize the deep learning applications for Big Data, Analytics Zoo provides a unified analytics + AI platform that seamlessly unites Spark, TensorFlow, Keras and BigDL programs into an integrated pipeline (as illustrated below), which can then transparently run on a large-scale Hadoop/Spark clusters for distributed training and inference. (Please see more details here).

1.Data wrangling and analysis using PySpark

   from zoo import init_nncontext
   from zoo.pipeline.api.net import TFDataset

   sc = init_nncontext()

   #Each record in the train_rdd consists of a list of NumPy ndrrays
   train_rdd = sc.parallelize(file_list)
     .map(lambda x: read_image_and_label(x))
     .map(lambda image_label: decode_to_ndarrays(image_label))

   #TFDataset represents a distributed set of elements,
   #in which each element contains one or more TensorFlow Tensor objects. 
   dataset = TFDataset.from_rdd(train_rdd,
                                names=["features", "labels"],
                                shapes=[[28, 28, 1], [1]],
                                types=[tf.float32, tf.int32],
                                batch_size=BATCH_SIZE)

2.Deep learning model development using TensorFlow

   import tensorflow as tf

   slim = tf.contrib.slim

   images, labels = dataset.tensors
   labels = tf.squeeze(labels)
   with slim.arg_scope(lenet.lenet_arg_scope()):
        logits, end_points = lenet.lenet(images, num_classes=10, is_training=True)

   loss = tf.reduce_mean(tf.losses.sparse_softmax_cross_entropy(logits=logits, labels=labels))

3.Distributed training on Spark and BigDL

   from zoo.tfpark import TFOptimizer
   from bigdl.optim.optimizer import MaxIteration, Adam, MaxEpoch, TrainSummary

   optimizer = TFOptimizer.from_loss(loss, Adam(1e-3))
   optimizer.set_train_summary(TrainSummary("/tmp/az_lenet", "lenet"))
   optimizer.optimize(end_trigger=MaxEpoch(5))

4.Alternatively, using Keras APIs for model development and distributed training

   from zoo.pipeline.api.keras.models import *
   from zoo.pipeline.api.keras.layers import *

   model = Sequential()
   model.add(Reshape((1, 28, 28), input_shape=(28, 28, 1)))
   model.add(Convolution2D(6, 5, 5, activation="tanh", name="conv1_5x5"))
   model.add(MaxPooling2D())
   model.add(Convolution2D(12, 5, 5, activation="tanh", name="conv2_5x5"))
   model.add(MaxPooling2D())
   model.add(Flatten())
   model.add(Dense(100, activation="tanh", name="fc1"))
   model.add(Dense(class_num, activation="softmax", name="fc2"))

   model.compile(loss='sparse_categorical_crossentropy',
                 optimizer='adam')
   model.fit(train_rdd, batch_size=BATCH_SIZE, nb_epoch=5)

High level abstractions and APIs

Analytics Zoo provides a set of easy-to-use, high level abstractions and APIs that natively transfer learning, autograd and custom layer/loss, Spark DataFrames and ML Pipelines, online model serving, etc. etc.

Transfer learning

Using the high level transfer learning APIs, you can easily customize pretrained models for feature extraction or fine-tuning. (See more details here)

1.Load an existing model (pretrained in Caffe)

   from zoo.pipeline.api.net import *
   full_model = Net.load_caffe(def_path, model_path)

2.Remove the last few layers

   # create a new model by removing layers after pool5/drop_7x7_s1
   model = full_model.new_graph(["pool5/drop_7x7_s1"])

3.Freeze the first few layers

   # freeze layers from input to pool4/3x3_s2 inclusive
   model.freeze_up_to(["pool4/3x3_s2"])

4.Add a few new layers

   from zoo.pipeline.api.keras.layers import *
   from zoo.pipeline.api.keras.models import *
   inputs = Input(name="input", shape=(3, 224, 224))
   inception = model.to_keras()(inputs)
   flatten = Flatten()(inception)
   logits = Dense(2)(flatten)
   newModel = Model(inputs, logits)

autograd

autograd provides automatic differentiation for math operations, so that you can easily build your own custom loss and layer (in both Python and Scala), as illustrated below. (See more details here)

1.Define model using Keras-style API and autograd

   import zoo.pipeline.api.autograd as A
   from zoo.pipeline.api.keras.layers import *
   from zoo.pipeline.api.keras.models import *

   input = Input(shape=[2, 20])
   features = TimeDistributed(layer=Dense(30))(input)
   f1 = features.index_select(1, 0)
   f2 = features.index_select(1, 1)
   diff = A.abs(f1 - f2)
   model = Model(input, diff)

2.Optionally define custom loss function using autograd

   def mean_absolute_error(y_true, y_pred):
       return mean(abs(y_true - y_pred), axis=1)

3.Train model with custom loss function

   model.compile(optimizer=SGD(), loss=mean_absolute_error)
   model.fit(x=..., y=...)

nnframes

nnframes provides native deep learning support in Spark DataFrames and ML Pipelines, so that you can easily build complex deep learning pipelines in just a few lines, as illustrated below. (See more details here)

1.Initialize NNContext and load images into DataFrames using NNImageReader

   from zoo.common.nncontext import *
   from zoo.pipeline.nnframes import *
   from zoo.feature.image import *
   sc = init_nncontext()
   imageDF = NNImageReader.readImages(image_path, sc)

2.Process loaded data using DataFrames transformations

   getName = udf(lambda row: ...)
   getLabel = udf(lambda name: ...)
   df = imageDF.withColumn("name", getName(col("image"))).withColumn("label", getLabel(col('name')))

3.Processing image using built-in feature engineering operations

   transformer = RowToImageFeature() -> ImageResize(64, 64) -> ImageChannelNormalize(123.0, 117.0, 104.0) \
                 -> ImageMatToTensor() -> ImageFeatureToTensor())

4.Define model using Keras-style APIs

   from zoo.pipeline.api.keras.layers import *
   from zoo.pipeline.api.keras.models import *
   model = Sequential().add(Convolution2D(32, 3, 3, activation='relu', input_shape=(1, 28, 28))) \
                   .add(MaxPooling2D(pool_size=(2, 2))).add(Flatten()).add(Dense(10, activation='softmax')))

5.Train model using Spark ML Pipelines

   classifier = NNClassifier(model, CrossEntropyCriterion(),transformer).setLearningRate(0.003) \
                   .setBatchSize(40).setMaxEpoch(1).setFeaturesCol("image").setCachingSample(False)
   nnModel = classifier.fit(df)

Model Serving

Using the POJO model serving API, you can productionize model serving and inference in any Java based frameworks (e.g., Spring Framework, Apache Storm, Kafka or Flink, etc.), as illustrated below:

import com.intel.analytics.zoo.pipeline.inference.AbstractInferenceModel;
import com.intel.analytics.zoo.pipeline.inference.JTensor;

public class TextClassificationModel extends AbstractInferenceModel {
    public TextClassificationModel() {
        super();
    }
}

TextClassificationModel model = new TextClassificationModel();
model.load(modelPath, weightPath);

List<JTensor> inputs = preprocess(...);
List<List<JTensor>> result = model.predict(inputs);
...

Built-in deep learning models

Analytics Zoo provides several built-in deep learning models that you can use for a variety of problem types, such as object detection, image classification, text classification, recommendation, anomaly detection, text matching, sequence to sequence, etc.

Object detection API

Using Analytics Zoo Object Detection API (including a set of pretrained detection models such as SSD and Faster-RCNN), you can easily build your object detection applications (e.g., localizing and identifying multiple objects in images and videos), as illustrated below. (See more details here)

1.Download object detection models in Analytics Zoo

You can download a collection of detection models (pretrained on the PSCAL VOC dataset and COCO dataset) from detection model zoo.

2.Use Object Detection API for off-the-shell inference

   from zoo.models.image.objectdetection import *
   model = ObjectDetector.load_model(model_path)
   image_set = ImageSet.read(img_path, sc)
   output = model.predict_image_set(image_set)

Image classification API

Using Analytics Zoo Image Classification API (including a set of pretrained detection models such as VGG, Inception, ResNet, MobileNet, etc.), you can easily build your image classification applications, as illustrated below. (See more details here)

1.Download image classification models in Analytics Zoo

You can download a collection of image classification models (pretrained on the ImageNet dataset) from image classification model zoo.

2.Use Image classification API for off-the-shell inference

   from zoo.models.image.imageclassification import *
   model = ImageClassifier.load_model(model_path)
   image_set = ImageSet.read(img_path, sc)
   output = model.predict_image_set(image_set)

Text classification API

Analytics Zoo Text Classification API provides a set of pre-defined models (using CNN, LSTM, etc.) for text classifications. (See more details here)

Recommendation API

Analytics Zoo Recommendation API provides a set of pre-defined models (such as Neural Collaborative Filtering, Wide and Deep Learning, etc.) for recommendations. (See more details here)

Anomaly detection API

Analytics Zoo Anomaly Detection API provides a set of pre-defined models based on LSTM to detect anomalies for time series data. (See more details here)

Text matching API

Analytics Zoo Text Matching API provides pre-defined KNRM model for ranking or classification. (See more details here)

Sequence to sequence API

Analytics Zoo Sequence to Sequence API provides a set of pre-defined models based on Recurrent neural network for sequence to sequence problems. (See more details here)

Reference use cases

Analytics Zoo provides a collection of end-to-end reference use cases, including time series anomaly detection, sentiment analysis, fraud detection, image similarity, etc. (See more details here)

Docker images and builders

Analytics-Zoo in Docker

By default, the Analytics-Zoo image has installed below packages: - git - maven - Oracle jdk 1.8.0_152 (in /opt/jdk1.8.0_152) - python 2.7.6 - pip - numpy - scipy - pandas - scikit-learn - matplotlib - seaborn - jupyter - wordcloud - moviepy - requests - tensorflow_ - spark-${SPARK_VERSION} (in /opt/work/spark-${SPARK_VERSION}) - Analytics-Zoo distribution (in /opt/work/analytics-zoo-${ANALYTICS_ZOO_VERSION}) - Analytics-Zoo source code (in /opt/work/analytics-zoo)

The work dir for Analytics-Zoo is /opt/work. - download-analytics-zoo.sh is used for downloading Analytics-Zoo distributions. - start-notebook.sh is used for starting the jupyter notebook. You can specify the environment settings and spark settings to start a specified jupyter notebook. - analytics-Zoo-${ANALYTICS_ZOO_VERSION} is the Analytics-Zoo home of Analytics-Zoo distribution. - analytics-zoo-SPARK_x.x-x.x.x-dist.zip is the zip file of Analytics-Zoo distribution. - spark-${SPARK_VERSION} is the Spark home. - analytics-zoo is cloned from https://github.com/intel-analytics/analytics-zoo, contains apps, examples using analytics-zoo.

How to build it

By default, you can build a Analytics-Zoo:default image with latest nightly-build Analytics-Zoo distributions:

sudo docker build --rm -t intelanalytics/analytics-zoo:default .

If you need http and https proxy to build the image:

sudo docker build \
    --build-arg http_proxy=http://your-proxy-host:your-proxy-port \
    --build-arg https_proxy=https://your-proxy-host:your-proxy-port \
    --rm -t intelanalytics/analytics-zoo:default .

You can also specify the ANALYTICS_ZOO_VERSION and SPARK_VERSION to build a specific Analytics-Zoo image:

sudo docker build \
    --build-arg http_proxy=http://your-proxy-host:your-proxy-port \
    --build-arg https_proxy=https://your-proxy-host:your-proxy-port \
    --build-arg ANALYTICS_ZOO_VERSION=0.3.0 \
    --build-arg BIGDL_VERSION=0.6.0 \
    --build-arg SPARK_VERSION=2.3.1 \
    --rm -t intelanalytics/analytics-zoo:0.3.0-bigdl_0.6.0-spark_2.3.1 .

How to use the image

To start a notebook directly with a specified port(e.g. 12345). You can view the notebook on http://[host-ip]:12345

sudo docker run -it --rm -p 12345:12345 \
    -e NotebookPort=12345 \
    -e NotebookToken="your-token" \
    intelanalytics/analytics-zoo:default

sudo docker run -it --rm --net=host \
    -e NotebookPort=12345 \
    -e NotebookToken="your-token" \
    intelanalytics/analytics-zoo:default

sudo docker run -it --rm -p 12345:12345 \
    -e NotebookPort=12345 \
    -e NotebookToken="your-token" \
    intelanalytics/analytics-zoo:0.3.0-bigdl_0.6.0-spark_2.3.1

sudo docker run -it --rm --net=host \
    -e NotebookPort=12345 \
    -e NotebookToken="your-token" \
    intelanalytics/analytics-zoo:0.3.0-bigdl_0.6.0-spark_2.3.1

If you need http and https proxy in your environment:

sudo docker run -it --rm -p 12345:12345 \
    -e NotebookPort=12345 \
    -e NotebookToken="your-token" \
    -e http_proxy=http://your-proxy-host:your-proxy-port \
    -e https_proxy=https://your-proxy-host:your-proxy-port \
    intelanalytics/analytics-zoo:default

sudo docker run -it --rm --net=host \
    -e NotebookPort=12345 \
    -e NotebookToken="your-token" \
    -e http_proxy=http://your-proxy-host:your-proxy-port \
    -e https_proxy=https://your-proxy-host:your-proxy-port \
    intelanalytics/analytics-zoo:default

sudo docker run -it --rm -p 12345:12345 \
    -e NotebookPort=12345 \
    -e NotebookToken="your-token" \
    -e http_proxy=http://your-proxy-host:your-proxy-port \
    -e https_proxy=https://your-proxy-host:your-proxy-port \
    intelanalytics/analytics-zoo:0.3.0-bigdl_0.6.0-spark_2.3.1

sudo docker run -it --rm --net=host \
    -e NotebookPort=12345 \
    -e NotebookToken="your-token" \
    -e http_proxy=http://your-proxy-host:your-proxy-port \
    -e https_proxy=https://your-proxy-host:your-proxy-port \
    intelanalytics/analytics-zoo:0.3.0-bigdl_0.6.0-spark_2.3.1

You can also start the container first

sudo docker run -it --rm --net=host \
    -e NotebookPort=12345 \
    -e NotebookToken="your-token" \
    intelanalytics/analytics-zoo:default bash

In the container, after setting proxy and ports, you can start the Notebook by:

/opt/work/start-notebook.sh

Notice

If you need nightly build version of Analytics-Zoo, please pull the image form Dockerhub with:

sudo docker pull intelanalytics/analytics-zoo:latest

Please follow the readme in each app folder to test the jupyter notebooks !!!

With 0.3+ version of Anaytics-Zoo Docker image, you can specify the runtime conf of spark

sudo docker run -itd --net=host \
    -e NotebookPort=12345 \
    -e NotebookToken="1234qwer" \
    -e http_proxy=http://your-proxy-host:your-proxy-port  \
    -e https_proxy=https://your-proxy-host:your-proxy-port  \
    -e RUNTIME_DRIVER_CORES=4 \
    -e RUNTIME_DRIVER_MEMORY=20g \
    -e RUNTIME_EXECUTOR_CORES=4 \
    -e RUNTIME_EXECUTOR_MEMORY=20g \
    -e RUNTIME_TOTAL_EXECUTOR_CORES=4 \
    intelanalytics/analytics-zoo:latest